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The kinetics of long-range electron transfer have been shown
to be dependent on three factors: the thermodynamic driving
force of the reaction (-∆G°), electronic coupling between the
electron donor and acceptor centers (Hab), and nuclear reorga-
nization (λ).1 Rate constants for long-range, non-adiabatic
electron transfer reactions can be described by the following
expression (eq 1):1

Kinetics experiments with modified cytochromesc have evalu-
ated the effects of changing driving force and electronic coupling
extensively through use of various Ru and Co complexes and
differing intramolecular electron transfer pathways.2

We have developed a new technique to study intramolecular
electron transfer reactions of proteins that involves the covalent
attachment of a flavin moiety to the protein surface. Although
flavins have been used extensively by Tollin, Cusanovich, and
their colleagues as electron donors for investigation of inter-
molecular electron transfer reactions,3 and by Kaiser and
colleagues as protein-modifying agents for the production of
novel enzyme adducts,4 flavins have not been used as protein-
modifying reagents for introduction of electron donor sites in
the study of intramolecular electron transfer reactions. The use
of flavins as an alternative to transition metal complexes in such
studies permits, in principle, the assessment of the contribution
of the unique attributes of flavins to the kinetics of electron
transfer in naturally-occurring flavocytochromes. The current
study demonstrates the usefulness of this approach in providing
insight into the contribution of flavin nuclear reorganization to
the rate of intramolecular electron transfer reactions.
To achieve site-specific modification, the His39Cys variant

of Saccharomyces cereVisiae iso-1-cytochromecwas prepared

by standard methods.5 The flavin 7R-(bromoacetyl)-10-meth-
ylisoalloxazine was synthesized4a and used to alkylate Cys39.6

HPLC tryptic peptide maps were consistent with flavin attach-
ment at this site.7 The electronic absorption spectrum of the
modified protein corresponds to the sum of the spectra for the
unreacted flavin and cytochromec, and the circular dichroism
spectra of the unmodified and modified proteins are superim-
posable. These observations indicate that little or no change
in the structure of the cytochrome is induced by the modification
reaction.8

The reduction potentials9 of the flavin and heme centers of
the modified protein are similar to those of the unmodified
cytochrome variant (Em values (vs SHE) are as follows (pH
7.0, sodium phosphate buffer,µ ) 0.1 M, 298 K): His39Cys,
0.259(2) V; free flavin, flox/fl red ) -0.110(2) V, flox/semi-
quinone radical) -0.140(7) V; flavin-His39Cys, Fe(III)/Fe-
(II) ) 0.257(2) V, flox/fl red ) -0.115(2) V). The dependence
of the potentials of the modified cytochrome on pH (pH 5.5-
8.0) defined the dependence of thermodynamic driving force
(-∆G°) for intramolecular electron transfer on pH. The pH
dependence of the midpoint potentials was used to investigate
the effects of substituting a cysteinyl residue for His39, which
has been identified previously as the single titratable group, the
pKa of which is dependent on the oxidation state of the heme
iron.10 The pKa values for this residue in the oxidized (pKo)
and reduced (pKr) states of the wild-type cytochrome are 6.6
and 7.0, respectively, while for the His39Cys variant the
corresponding values are 7.5 and 7.9. These results indicate
that in the variant, the pKa of Cys39 is oxidation-state dependent.
This conclusion is substantiated by the finding that after
modification of the variant with the flavin, the reduction
potential of the heme iron is independent of pH.

Laser flash photolysis was employed11 to study the electron
transfer kinetics of the flavin-modified cytochrome from pH
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ket ) (4π2/h)(1/(4πλRT)1/2)(Hab)
2 exp(-(∆G° + λ)2/4λRT)

(1)
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5.5 to 8.012 and from 284 to 313 K (sodium phosphate buffer,
µ ) 0.1 M) (Table 1, Figure 2). Interpretation of these results
was initiated by calculation of energy-minimized structural
models for the His39Cys variant and the corresponding flavin-
modified protein (Figure 1).13 In the resulting model, the flavin
is oriented away from the protein surface, into the surrounding
solvent. The electronic coupling between the flavin-modified
Cys39 residue and the heme center was calculated with the
artificial intelligence (AI) superexchange method.14 The amino
acid residues selected by the AI search are Ser40*, Gly41*,
Asn52*, Val57, Leu58, and Trp59 (residues labeled with an
asterisk constitute the “best” path (Figure 1)). Using only these
amino acid residues as the part of the protein-mediating electron
transfer, the electronic coupling (Hab) is calculated to be 0.034
cm-1.15 Similar kinetic analysis14 of intramolecular electron
transfer inCandida kruseiRu(bpy)2-(His39) ferricytochrome

c2d produced a value for Hab of 0.11 cm-1. At present, it is
difficult to provide a definitive explanation for the apparent
difference in electronic coupling exhibited in the flavin-modified
and ruthenium-modified proteins. Nevertheless, the attachment
of the new electron donor to a Cys residue as opposed to a His
residue is undoubtedly a major contributory factor.
The reorganization energy of the system (λ) can be esti-

mated16 from the temperature dependence of the electron transfer
rate constant (Table 1) to yield a value of 1.2(1) eV.17 With λ
fixed within this value range, the experimental thermodynamic
driving force dependent electron transfer rate constants were
fitted by least squares analysis to eq 1 to generate a plot of ln
ket vs -∆G° (Figure 2). The experimental estimate for the
electronic coupling associated with the electron transfer process
obtained in this manner is 0.04(3) cm-1, which is in good
agreement with the theoretical prediction.
From the value of 0.5 eV for the reorganization energy of

the protein component of this system that was derived from
analysis of the self-exchange reaction of cytochromec,1 it is
possible to determine that the reorganization energy for the
flavin donor center is 0.7(1) eV. This high value forλ can be
explained by the fact that the energy required to distort the
equilibrium nuclear geometries of organic molecules, such as
flavins, is increased in aqueous media.18 The present work
demonstrates an alterative technique for the study of intramo-
lecular electron transfer processes within protein structures that
uses a novel donor state and provides the first experimentally-
based estimate for reorganization energy of a flavin in an
intramolecular electron transfer reaction.
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Table 1. Parameters for Electron Transfer from the Flavin
Semiquinone Radical to the Heme Iron of the Flavin-Modified
Yeastiso-1-Cytochromec His39Cys Varianta

pH T (K) -∆G° (eV) ket (s-1) ln ket

5.56 298 0.302 4.00× 102 6.00
6.00 298 0.336 6.40× 102 6.46
6.94 298 0.382 1.15× 103 7.05
7.00 284 0.390 8.04× 102 6.69

288 1.16× 103 7.05
293 1.18× 103 7.07
298 1.29× 103 7.16
304 1.32× 103 7.18
313 1.64× 103 7.40

7.26 298 0.400 2.17× 103 7.68
7.96 298 0.417 2.70× 103 7.90

a Sodium phosphate buffer,µ ) 0.1 M.

Figure 1. Minimum-energy structure of flavin-modified yeastiso-1-
cytochromec. Residues involved in the “best” electron transfer pathway,
identified as described in the text, are highlighted by dark lines.

Figure 2. Dependence ofket on-∆G° for the reduction of cytochrome
c by the covalently-bound flavin. The solid line is the best fit to eq 1.
The shaded area represents the uncertainty in the fit when using the
range of values forλ obtained from the temperature dependence data.
A representative absorption transient and fit are shown in the inset.
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